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Proposition 0.1 (Exercise 1a). Let R be a commutative ring and x € R an element that is
not a zero divisor. Let M be an R-module. Then

Tor(R/(x), M) = {m € M : am = 0}

Proof. Consider the sequence of R-modules

0 > R » R =% R/(z) — 0

The map r — xr is injective because x is not a zero divisor, so this is an exact sequence.
Since R is free as an R-module, this is a projective resolution of R/(x). Dropping the R/(z)
and applying the tensor functor M ® — we get the complex

mer—me(xr)
_—

0 — M®R M®R —— 0

Note that m ® (xr) = (xm) ® r. We have a functorial isomorphism M ® R — M given by
m ® r — rm, that is, the following diagram commutes:

mer—(xm)

0 —— M®R e M®R — 0

lm@r»—wm J{m@rl—wm

m—=rm

0O — M M — 0

By definition, Tor; (R/(x), M) is the homology of the top row tensor chain complex at the left
copy of M®R. Since the image is trivial, this homology is just the kernel of m®r +— (zm)®r.
Since the vertical maps are isomorphisms and the square commutes, this kernel is isomorphic
to the kernel of m +— xm. Thus

Torf(R/(x), M) = {m € M : 2m = 0}

Proposition 0.2 (Exercise 1b). Let m,n be positive integers, and let d = ged(n, m).
Tor?(Z/mZ,7./n7) = 7./ dZ.
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Proof. We apply part (a) with R = Z, x = m, and M = Z/nZ. Then
Tor®(Z/mZ,7./n7) = {x € Z/nZ : mz = 0}

This is the kernel of Z/nZ — 7Z/nZ defined by = — mx, so it is a subgroup of Z/nZ, so it
is cyclic. It is generated by m, so it is cyclic of order ged(n, m). O

Lemma 0.3 (for Exercises 2a,2b). Let A be an abelian group. There is a free resolution of
Z-modules
> 0 0 > F >y A > 0

In particular, this is a projective resolution of A.

Proof. Let {x;};cs be a set of generators for A, and let F' be the free abelian group generated
by {z;}icr. Let m: F' — A be the unique homomorphism such that x; — z;. Since ker 7 is
a subgroup of a free abelian group, it is free. Let ¢ : kerm — F' be the inclusion. Then the
sequence

> 0 > 0 s ker s F T s A

is a free resolution of A. O]

~
(@)

Proposition 0.4 (Exercise 2a). Let A and B be abelian groups. Then Tor“(A, B) = 0 for
n > 2.

Proof. Using the previous lemma, take a free resolution of A,

s 0 s 0 FE F A s 0

Then Tor% is the homology of the sequence

> 0 > 0 s F B —— F®B —— 0

All of the kernels are trivial except the two on the far right, so the 2nd homology and higher
are zero. O

Proposition 0.5 (Exercise 2b). Let A and B be abelian groups. Then Exty (A, B) =0 for
n > 2.

Proof. Using the previous lemma, take a free resolution of A,

0 s 0 s B s I s A 0

Then ExtZ is the homology of the sequence

0 —— Hom(F, B) —— Hom(E, B) y 0 y 0 oL

Starting with the 2nd homology, the kernel and image are both trivial, so Ext? = 0 for
n > 2. ]

Proposition 0.6 (Exercise 2c). Let A be a finitely generated abelian group. Then A is free
abelian if and only if Exty(A,Z) = 0.



Proof. First suppose that A is free abelian. Since A is finitely generated,

A=Pz
=1
Then
Extl(A,Z) = Ext}, (@ Z, Z) ~ [ [ Exty(Z. Z)
=1

i=1
Since Z is a free module over itself, it is projective, so Ext}(Z, B) = 0 for any abelian group
B, so Exty(Z,Z) = 0. Thus Ext;(A,Z) 2], 0= 0.

Now suppose that Ext} (A, Z) = 0. Since A is finitely generated,

A= (@Z) @ (g} Z/ajz>

for some set of a; € Z. Then

Ext;, (A, Z) = Ext;, ((é Z) = (é Z/aﬂ) ,Z>
<f[ Ext%(Z,Z)) X (ﬁ Ext%(Z/ajZ,Z)>

Jj=1

I

As already noted, Ext}(Z,Z) = 0, so

Exty(A, Z) = | | Ext(Z/a,Z, Z)

j=1

However, we know that
Exty(Z/a;Z,7) = 7./ a;Z

which is not zero unless a; = 1. Thus since Exty (A, Z) = 0 by hypothesis, a; = 1 for all j.
That is,

A

@

so A is free abelian. O]

Lemma 0.7 (for Exercise 3a). Let f: X — Y and g: Y — Z be set maps so that go f is
injective. Then f is injective.

Proof. Let a,b € X so that f(a) = f(b). Then go f(a) = g o f(b) which implies a = b by
injectivity of g o f. Hence f is injective. m

Proposition 0.8 (Exercise 3a). Fiz a commutative ring R, and let

¢

0 — F -5 F 25 F" — 0
be an exact sequence of R-modules, where F" is flat. Then F is flat if and only if F" is flat.
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Proof. (All homomorphisms are R-module homomorphisms and all tensors are over R.) Let
a : E' — FE be an injective homomorphism. Since F” is flat, F”" ® F' — F" ® E defined
by " ®¢e — f” ® a(e) is injective. Also, by Lemma 3.3 in Lang, the rows in the following
diagram are exact. The diagram is commutative because the tensor product is a functor.

0 — FIQE —— FQF —— FI'QFE —— 0

l l l

0 — FF'QFE — FQF —— F"QF —— 0

Suppose F” is flat. Then F' @ £/ — F' ® F is injective. Since F' @ £/ — F" ® F is
also injective and 0 — 0 is (trivially) surjective, the diagram satisfies the hypotheses of
Exercise 15a from Chapter 3 which we did in Homework 1 (one of the Four Lemmas). Thus
F® FE — F® F is injective. Thus F is flat.

Now suppose that F' is flat. Then FF ® E' — F ® FE is injective, so the composition
F'QFE — FQFE — F®LE is a composition of injections, so it is injective. By commutativity
of the left square, the composition F' @ £/ — F' ® E — F ® E must be injective. By the
previous lemma, this implies that F' ® £ — F’'® E is injective, which means that F” is flat.

(Here’s the same commutative diagram with detailed descriptions of the maps.)

'®e'—=o(f ®e' =y (f)®e
—

00— Fop L N A o F'@E — 0

J/f’@el’—)f/(@a(e’) lf@el’—)f@)@(e,) lf”‘@e,'_)f”@a(e/)

f'@e—d(f)Qe f®e—(f)Re

0 — F'QFE FeFE F'e@EFE —— 0

O

Proposition 0.9 (Exercise 3a, alternate proof using a long exact sequence). Fiz a commu-
tative ring R, and let

0 — F/ -2y p Y pv s 0

be an exact sequence of R-modules, where F" is flat. Then F' is flat if and only if F" is flat.

Proof. Fix an R-module M and a projective resolution of M

Pl Po M > 0




Then we have the following commutative diagram.

0 0 0

L —— PP, —— PP —— FF@FP) —— 0

— FP — FP —— FFP —— 0

— FP —— FI'P, —— F'QP —— 0

0 0 0

Each column is a short exact sequence, because P, is projective and hence flat (Lang, Propo-
sition 3.1(iii), page 613). That is, the above is a short exact sequence of complexes with
morphlsms of degree zero. For each row, the nth homology is Tor®(F’, M), Tor®(F, M), o
Torf(F", M) respectively. By Theorem 2.1 (Lang, page 768), we get a long exact sequence
on homology,

. — Tor®(F', M) — Tor®(F, M) — Tor®(F", M) —
— Tor, | (F', M) — Torf, | (F, M) — Tor (F", M) — ...

Now, since F” is flat, Tor®(F” M) = 0 for n > 1 (Theorem 3.11 in Lang, page 622), so the
above can be rewritten as

.= Tor®(F', M) — Torf(F, M) — 0 — Torf ,(F', M) — Tork, (F,M) =0 — ...
If F is flat, then Tor®(F, M) = 0 for n > 1, so the sequence becomes

.= Tor®(F',M) = 0—0— Torf | (F,M) - 0—0—...

Since this sequence is exact, this implies that Tor?(F’, M) = 0 for n > 1, so F’ is flat (again
by Theorem 3.11). By a similar argument, if F” is flat, we get an exact sequence

.= 0— Tor®(F,M) — 0 — 0 — Tor?, ,(F,M) = 0 — ..

which implies that Tor®(F, M) = 0 for n > 1, so F is flat. Hence F” is flat if and only if F
is flat. -

Proposition 0.10 (Exercise 3b, injective part). Fiz a commutative ring R, and let

0 —— F’ F s s 0

be an exact sequence of R-modules, where F' is injective. Then F' is injective if and only if
F" is injective.



Proof. Fix an R-module M and a projective resolution of M

P > Py M > 0

Then we have the following commutative diagram, which is a short exact sequence of chain
complexes with morphisms of degree zero.

0 0 0

0 —— HOIHR(P(),F/) —_— HOII]R<P1,F/) —_— HOHlR(PQ,F/) —_— ...

0 —— HOIHR(PO,F) —_— HOHlR(Pl,F) —_— HOH]R(PQ,F> —_— ...

0 —— Homg(Py, F") —— Homg(P, F") —— Homg(Py, F") —— ...

0 0 0

Each column is a short exact sequence, because P is projective, so the functor Homg(FP;, —) is
exact. Thus the above is a short exact sequence of complexes with morphisms of degree zero.

For each row, the nth homology is Ext®(M, F'), Ext® (M, F), or Ext®(M, F") respectively.
By Theorem 2.1 (Lang, page 768), we get a long exact sequence on homology,
.= Extf(M, F') — Ext (M, F) — Ext®(M, F") —
— Ext? (M, F') — Extf (M, F) — Ext? (M, F") — ...

Now, since F” is injective, Ext (M, F') = 0 for n > 1, so the above can be rewritten as

o= 0= BExt®(M, F) — Extf(M, F") — 0 — Extf

n+1(M7 F) — EthJrl(M? F//) e

If F is injective, then Ext®(M, F) = 0 for n > 1, so the sequence becomes

.= 0—=0— Exti(M,F") - 0—0— Extl (M, F") — ...

Since this sequence is exact, this implies that Ext%(M, F”) = 0 for n > 1, so F” is injective.
By a similar argument, if F” is injective, we get an exact sequence

.= 0= Ext® (M, F) - 0 — 0 — Ext”?

(ML EF) =0 — ...

which implies that Ext%(M, F) = 0 for n > 1, so F is injective. Hence F” is injective if and
only if F' is injective. [

Proposition 0.11 (Exercise 3b, projective part). Fiz a commutative ring R, and let
0 — FF —2 s p 2y pr > 0

be an exact sequence of R-modules, where F" is projective. Then F' is projective if and only
if F' is projective.




Proof. Fix an R-module M and an injective resolution of M

0 M >I(] > I > .

Then we have the following commutative diagram, which is a short exact sequence of chain
complexes with morphisms of degree zero.

0 0 0

0 —— Homg(F',Iy)) —— Homg(F',I;) —— Homg(F', L) —— ...

0 —— Homg(F,Iy) —— Homg(F,I;) —— Homg(F,I,) —— ...

0 —— Homg(F”,Iy) —— Hompg(F",I;) —— Homg(F", ) —— ...

0 0 0

Each column is a short exact sequence, because I; is injective, so the functor Hompg(—, I;) is
exact. Thus the above is a short exact sequence of complexes with morphisms of degree zero.
For each row, the nth homology is Ext(F', M), Ext®(F, M), or Ext®(F", M) respectively.
By Theorem 2.1 (Lang, page 768), we get a long exact sequence on homology,

.= Bxt®(F" M) — Ext®(F, M) — Ext®(F', M) —
— Extf  (F", M) — Ext?, | (F, M) — Ext? (F/,M) — ...

Now, since F” is projective, Extf(F"”, M) = 0 for n > 1, so the above can be rewritten as
.= 0= Extl(F, M) — Extf(F',M) - 0 — Ext,,(F, M) — Ext%  (F/,M) — ...
If F is projective, then Ext®(F, M) = 0 for n > 1, so the sequence becomes
o= 00— ExtI(F,M)—0—0— Extl'  (F,M) — ...

Since this sequence is exact, this implies that Ext®(F’, M) = 0 for n > 1, so F" is projective.
By a similar argument, if F” is projective, we get an exact sequence

.= 0= Extf(F, M) 50— 0— Ext? (F,M) = 0— ...

which implies that Ext?(F, M) = 0 for n > 1, so F is projective. Hence I’ is projective if
and only if F is projective. m

Definition 0.12. Let R be a ring, and M, N be R-modules. An extension of M by N is
an exact sequence

0 > N y B > M 0




We define a map from extensions of M by N to Ext}(M, N). Choose an extension
0—-N—FE — M — 0. Let P be a projective R-module, with a surjective homomorphism
p: P — M. Let K = kerp. Then there is an exact sequence

0 s K 2 p Y M 0

where w is the inclusion. Because P is projective, there exists a homomorphism u : P — F|
and depending on u a unique homomorphism v : K — N so that the following diagram
commutes.

0 sy K 2P L5 M 0
|
0 y N E > M 0

On the other hand, we have the exact sequence
0 —— Homp(M,N) —— Hompg(P,N) —— Hompg(K,N) —— Extp(M,N) — 0

with the last term on the right being equal to zero because Ext},(P, N) = 0. To the extension
0— N — E — M — 0 we associate the image of v in Ext}(M, N).

Proposition 0.13 (Exercise 4, Lang Ch. XX Exercise 27). The association above is a
bijection between isomorphism classes of extensions and Extp(M, N).

Proof. Denote the association defined above by ®. We will construct an inverse for ®. Let
e € Extp(M, N). We have an exact sequence

0 y K —— P 25 M 0
where P is projective, K = kerp, and w is the inclusion. Then the following sequence is
exact,
0 —— Homgp(M,N) —— Hompg(P,N) —— Hompg(K, N)
—— Bxtp(M,N) —— Extp(P,N) —
But Ext,(P,N) = 0 since P is projective, so Homp(K, N) — Exty(M, N) is surjective.
That is, there exists v € Homg (K, N) so that ®(v) = e.

Now define
J={(v(z),~w(x)) e N& P:z e K}

and then define £ = (N @ P)/J. We claim that the map ¢ : N — E given by y — (y,0)
mod J is injective.

kerp={ye N:(y,0)eJ}={yeN:Jxe Ky=v(z),0=w(—x)}

Since w is injective, w(—z) = 0 implies = 0, so the kernel of ¢ is trivial. Hence v is
injective as claimed. Now we claim that the map N & P — M given by (z,y) — (0,p(y))
vanishes on J. This follows because p o w = 0.

(v(z), —w(x)) = (0, p(—w(z)) = (0, —p(w(x))) = (0,0)
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Hence we have an induced map F = (N & P)/J — M, which is surjective. Thus, from
e € Ext}%(M, N), we have produced an extension 0 - N — E — M — 0. We'll denote this
association W.

We claim that ® o ¥ is the identity on Ext,(M, N). Let e € Extp(M, N). Then ¥(e)
is the extension 0 - N — E — M — 0, which, by construction, lives inside the following
diagram:

0 y K —~ P P M > 0
| | |
0 > N (N@& P)/J > M > 0

By definition of ®, ®(¥(e)) is the image of v in Ext,(K, N), which is e by construction of
W. Thus ® o ¥ is the identity on Extj(M, N).

Now we claim that ¥ o ® maps an extension to an isomorphic extension. Let 0 — N —
E — M — 0 be an extension of M by N. By definition, its image under ® is found by
choosing a projective module P containing M and constructing the following diagram, and
taking the image of v in Extk(M, N).

0 K -“sp -2y M s 0
o T
0 N s B s M > 0

Denote this image by e. Then by construction of ¥, ¥(e) is the extension 0 — N —
(N @& P)/J — M — 0 so that the following diagram commutes.

0 N P P v M s 0
.| | ol
0 s N s (N@ P)/J s M s 0

Combining these diagrams,

0 > N (Ne P)/J > M 0
0 y K — P Ly M > 0
S
0 » N E » M > 0
then deleting some now irrelevant pieces,
0 > N > (Ne P)/J > M > 0
‘m P id
0 > N > I > M > 0



and further collapsing, we get

(NeP)/J

T \M—>

P

—>N/
~

E

0 0

Then we get a map (N @ P)/J — E by (z,y) — u(y). This map makes the above diagram
commute, so these extensions are isomorphic. O

Proposition 0.14 (Exercise 5). Three inequivalent extensions of Z/3Z by Z are given by

11

0 Z Z Z/3Z — 0

0 —— 7z ¢ Z 192, 7/37 —— 0

0 7 20 g3z Y27 73— o
(0,1)—~1

Proof. First we check that these are all exact sequences.

im(1+ 3) =3Z = ker(1 — 1)
im(1+— 3) = 3Z = ker(1 — 2)
im(1+— (1,0)) = {(n,0) : n € Z} = ker((1,0) — 0)

The third extension is not equivalent to the first two because there is no isomorphism Z —
Z x 7/3Z, since the former is torsion free and the latter is not. If the first two are equivalent
extensions, then there is an isomorphism ¢ : Z — Z so that the following diagram commutes:

Z

N

00— 7 " 7)37 —— 0
1'& A2
7

Just looking at the left triangle implies that ¢ = Idz, which measn that the right triangle does
not commute. Hence no such isomorphism exists, so these are inequivalent extensions. [

Proposition 0.15 (Exercise 6a). Let R = C[xz,y| be the ring of polynomials with complex
coefficients in two variables x,y. Define R x C — C by

[z (£(0,0))(2)

then C is an R-module with this structure.
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Proof. Let z,21,29 € C and f, g € C[z,y|. Let p; denote the constant polynomial p;(x,y) =
1, which is the multiplicative unit in C[x, y].

f(z14 22) = f(0,0)(z1 + 22) = f(0,0)z1 + f(0,0)20 = f- 21+ f - 22
(f+9)-z=(f+9)0,0)z=(f(0,0) +g(0,0))z = f(0,0)z + g(0,0)z = f -2+ g2
(fg)-z=(f9)(0,0)z = (f(0,0)g(0,0))z = f(0,0)(g-2) = f-(g-2)
p1-z2=p1(0,0)z =z

Thus this gives C an R-module structure. m

Proposition 0.16 (Exercise 7a). Let R be a principal ideal domain, and let F' be an R-
module. Then F' is flat if and only if it is torsion free.

Proof. Suppose F is flat. For r € R, define ¢, : R — R by ¢,(x) = rx. Since R is an
integral domain, 1), is injective. Since F' is flat, the induced map ldp ®¢, : FR R - F® R
given by f ® x — f ®1,(x) is injective. Suppose f is a torsion element of F'| that is, there
exists r € R with r # 0 so that rf = 0. Then

dr @Y. (fol)=fr=(f)®1=0
ldrp @, (001)=0®7r =0

By injectivity of Idr ®1),., this implies f ® 1 = 0® 1. Recall that the map F'® R — F given
by f ®1 — f is an isomorphism, so f = 0. Thus any torsion element of f is zero, so F' is
torsion free.

Now suppose F is torsion free. Recall that F is flat if and only if Tor?(F, R/I) = 0 for
every ideal I C R. Let I C R be an ideal. Since R is a PID, I = (x) for some a € R. By

Proposition 0.1,
Tor)'(F, R/(z)) = {f € F : «f = 0}

which is zero because F' is torsion free. Thus F' is flat. O
Lemma 0.17 (for Exercise 7b). A Z-module is projective if and only if it is free.

Proof. Free modules are always projective, over any ring, so one direction is done. Let M
be a projective Z-module. Then M is a direct summand of a free Z-module, that is, there
exists an abelian group N so that M @& N is free abelian. Then M is a subgroup of a free
abelian group, so it is free abelian (Theorem 7.3 in Lang). Thus M is a free Z-module. [

Lemma 0.18 (for Exercise 7b). Q is not a free Z-module.

Proof. Suppose that Q is free as a Z-module. Then the basis cannot have just one element
x, since then § would not be an integer multiple of z, and then z would not generate Q over
Z. Thus there must be a linearly independent set with at least two nonzero elements, say ¥

and § with a,b,c,d € Z\ {0}. Then note that lem(0.¢) and lcmia’c) are both integers, so

a

() @ () () -

is a nontrivial linear combination. Thus there are no linearly independent subset of Q with
at least two elements. Thus there can be no basis for Q over Z, so it is not free. n
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Proposition 0.19 (Exercise 7b). As a Z-module, Q is flat but not projective.

Proof. Since Q is torsion-free and Z is a PID, Q is a flat Z-module by part (a). By the
previous two lemmas, a Z module is free if and only if it is projective, and Q is not free;
hence Q is not a projective Z-module. O]
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