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Proposition 0.1 (Exercise 1a). Let R be a commutative ring and x ∈ R an element that is
not a zero divisor. Let M be an R-module. Then

TorR1 (R/(x),M) ∼= {m ∈M : xm = 0}

Proof. Consider the sequence of R-modules

0 −−−→ R
r 7→xr−−−→ R

r 7→r−−−→ R/(x) −−−→ 0

The map r 7→ xr is injective because x is not a zero divisor, so this is an exact sequence.
Since R is free as an R-module, this is a projective resolution of R/(x). Dropping the R/(x)
and applying the tensor functor M ⊗− we get the complex

0 −−−→ M ⊗R m⊗r 7→m⊗(xr)−−−−−−−−→ M ⊗R −−−→ 0

Note that m ⊗ (xr) = (xm) ⊗ r. We have a functorial isomorphism M ⊗ R → M given by
m⊗ r 7→ rm, that is, the following diagram commutes:

0 −−−→ M ⊗R m⊗r 7→(xm)⊗r−−−−−−−−→ M ⊗R −−−→ 0ym⊗r 7→rm ym⊗r 7→rm
0 −−−→ M

m7→xm−−−−→ M −−−→ 0

By definition, Tor1(R/(x),M) is the homology of the top row tensor chain complex at the left
copy of M⊗R. Since the image is trivial, this homology is just the kernel of m⊗r 7→ (xm)⊗r.
Since the vertical maps are isomorphisms and the square commutes, this kernel is isomorphic
to the kernel of m 7→ xm. Thus

TorR1 (R/(x),M) ∼= {m ∈M : xm = 0}

Proposition 0.2 (Exercise 1b). Let m,n be positive integers, and let d = gcd(n,m).

TorZ1 (Z/mZ,Z/nZ) ∼= Z/dZ
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Proof. We apply part (a) with R = Z, x = m, and M = Z/nZ. Then

TorZ1 (Z/mZ,Z/nZ) = {x ∈ Z/nZ : mx = 0}

This is the kernel of Z/nZ → Z/nZ defined by x → mx, so it is a subgroup of Z/nZ, so it
is cyclic. It is generated by n

gcd(n,m)
, so it is cyclic of order gcd(n,m).

Lemma 0.3 (for Exercises 2a,2b). Let A be an abelian group. There is a free resolution of
Z-modules

. . . −−−→ 0 −−−→ 0 −−−→ E −−−→ F −−−→ A −−−→ 0

In particular, this is a projective resolution of A.

Proof. Let {xi}i∈I be a set of generators for A, and let F be the free abelian group generated
by {xi}i∈I . Let π : F → A be the unique homomorphism such that xi 7→ xi. Since kerπ is
a subgroup of a free abelian group, it is free. Let ι : kerπ → F be the inclusion. Then the
sequence

. . . −−−→ 0 −−−→ 0 −−−→ kerπ
ι−−−→ F

π−−−→ A −−−→ 0

is a free resolution of A.

Proposition 0.4 (Exercise 2a). Let A and B be abelian groups. Then TorZn(A,B) = 0 for
n ≥ 2.

Proof. Using the previous lemma, take a free resolution of A,

. . . −−−→ 0 −−−→ 0 −−−→ E −−−→ F −−−→ A −−−→ 0

Then TorZn is the homology of the sequence

. . . −−−→ 0 −−−→ 0 −−−→ E ⊗B −−−→ F ⊗B −−−→ 0

All of the kernels are trivial except the two on the far right, so the 2nd homology and higher
are zero.

Proposition 0.5 (Exercise 2b). Let A and B be abelian groups. Then ExtnZ(A,B) = 0 for
n ≥ 2.

Proof. Using the previous lemma, take a free resolution of A,

. . . −−−→ 0 −−−→ 0 −−−→ E −−−→ F −−−→ A −−−→ 0

Then ExtZn is the homology of the sequence

0 −−−→ Hom(F,B) −−−→ Hom(E,B) −−−→ 0 −−−→ 0 −−−→ . . .

Starting with the 2nd homology, the kernel and image are both trivial, so ExtZn = 0 for
n ≥ 2.

Proposition 0.6 (Exercise 2c). Let A be a finitely generated abelian group. Then A is free
abelian if and only if Ext1Z(A,Z) = 0.
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Proof. First suppose that A is free abelian. Since A is finitely generated,

A ∼=
n⊕
i=1

Z

Then

Ext1Z(A,Z) ∼= Ext1Z

(
n⊕
i=1

Z,Z

)
∼=

n∏
i=1

Ext1Z(Z,Z)

Since Z is a free module over itself, it is projective, so Ext1Z(Z, B) = 0 for any abelian group
B, so Ext1Z(Z,Z) = 0. Thus Ext1Z(A,Z) ∼=

∏n
i=1 0 = 0.

Now suppose that Ext1Z(A,Z) = 0. Since A is finitely generated,

A ∼=

(
n⊕
i=1

Z

)
⊕

(
m⊕
j=1

Z/ajZ

)
for some set of aj ∈ Z. Then

Ext1Z(A,Z) ∼= Ext1Z

((
n⊕
i=1

Z

)
⊕

(
m⊕
j=1

Z/ajZ

)
,Z

)

∼=

(
n∏
i=1

Ext1Z(Z,Z)

)
×

(
m∏
j=1

Ext1Z(Z/ajZ,Z)

)

As already noted, Ext1Z(Z,Z) = 0, so

Ext1Z(A,Z) ∼=
m∏
j=1

Ext1Z(Z/ajZ,Z)

However, we know that
Ext1Z(Z/ajZ,Z) ∼= Z/ajZ

which is not zero unless aj = 1. Thus since Ext1Z(A,Z) = 0 by hypothesis, aj = 1 for all j.
That is,

A ∼=
m⊕
i=1

Z

so A is free abelian.

Lemma 0.7 (for Exercise 3a). Let f : X → Y and g : Y → Z be set maps so that g ◦ f is
injective. Then f is injective.

Proof. Let a, b ∈ X so that f(a) = f(b). Then g ◦ f(a) = g ◦ f(b) which implies a = b by
injectivity of g ◦ f . Hence f is injective.

Proposition 0.8 (Exercise 3a). Fix a commutative ring R, and let

0 −−−→ F ′
φ−−−→ F

ψ−−−→ F ′′ −−−→ 0

be an exact sequence of R-modules, where F ′′ is flat. Then F is flat if and only if F ′ is flat.
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Proof. (All homomorphisms are R-module homomorphisms and all tensors are over R.) Let
α : E ′ → E be an injective homomorphism. Since F ′′ is flat, F ′′ ⊗ E ′ → F ′′ ⊗ E defined
by f ′′ ⊗ e′ → f ′′ ⊗ α(e′) is injective. Also, by Lemma 3.3 in Lang, the rows in the following
diagram are exact. The diagram is commutative because the tensor product is a functor.

0 −−−→ F ′ ⊗ E ′ −−−→ F ⊗ E ′ −−−→ F ′′ ⊗ E ′ −−−→ 0y y y
0 −−−→ F ′ ⊗ E −−−→ F ⊗ E −−−→ F ′′ ⊗ E −−−→ 0

Suppose F ′ is flat. Then F ′ ⊗ E ′ → F ′ ⊗ E is injective. Since F ′′ ⊗ E ′ → F ′′ ⊗ E is
also injective and 0 → 0 is (trivially) surjective, the diagram satisfies the hypotheses of
Exercise 15a from Chapter 3 which we did in Homework 1 (one of the Four Lemmas). Thus
F ⊗ E ′ → F ⊗ E is injective. Thus F is flat.

Now suppose that F is flat. Then F ⊗ E ′ → F ⊗ E is injective, so the composition
F ′⊗E ′ → F⊗E ′ → F⊗E is a composition of injections, so it is injective. By commutativity
of the left square, the composition F ′ ⊗ E ′ → F ′ ⊗ E → F ⊗ E must be injective. By the
previous lemma, this implies that F ′⊗E ′ → F ′⊗E is injective, which means that F ′ is flat.

(Here’s the same commutative diagram with detailed descriptions of the maps.)

0 −−−→ F ′ ⊗ E ′ f ′⊗e′ 7→φ(f ′)⊗e′−−−−−−−−−→ F ⊗ E ′ f⊗e′ 7→ψ(f)⊗e′−−−−−−−−→ F ′′ ⊗ E ′ −−−→ 0yf ′⊗e′ 7→f ′⊗α(e′) yf⊗e′ 7→f⊗α(e′) yf ′′⊗e′ 7→f ′′⊗α(e′)
0 −−−→ F ′ ⊗ E f ′⊗e7→φ(f ′)⊗e−−−−−−−−→ F ⊗ E f⊗e7→ψ(f)⊗e−−−−−−−−→ F ′′ ⊗ E −−−→ 0

Proposition 0.9 (Exercise 3a, alternate proof using a long exact sequence). Fix a commu-
tative ring R, and let

0 −−−→ F ′
φ−−−→ F

ψ−−−→ F ′′ −−−→ 0

be an exact sequence of R-modules, where F ′′ is flat. Then F is flat if and only if F ′ is flat.

Proof. Fix an R-module M and a projective resolution of M

. . . −−−→ P1 −−−→ P0 −−−→ M −−−→ 0
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Then we have the following commutative diagram.

0 0 0y y y
. . . −−−→ F ′ ⊗ P2 −−−→ F ′ ⊗ P1 −−−→ F ′ ⊗ P0 −−−→ 0y y y
. . . −−−→ F ⊗ P2 −−−→ F ⊗ P1 −−−→ F ⊗ P0 −−−→ 0y y y
. . . −−−→ F ′′ ⊗ P2 −−−→ F ′′ ⊗ P1 −−−→ F ′′ ⊗ P0 −−−→ 0y y y

0 0 0

Each column is a short exact sequence, because Pi is projective and hence flat (Lang, Propo-
sition 3.1(iii), page 613). That is, the above is a short exact sequence of complexes with
morphisms of degree zero. For each row, the nth homology is TorRn (F ′,M), TorRn (F,M), or
TorRn (F ′′,M) respectively. By Theorem 2.1 (Lang, page 768), we get a long exact sequence
on homology,

. . .→ TorRn (F ′,M)→ TorRn (F,M)→ TorRn (F ′′,M)→
→ TorRn+1(F

′,M)→ TorRn+1(F,M)→ TorRn+1(F
′′,M)→ . . .

Now, since F ′′ is flat, TorRn (F ′′,M) = 0 for n ≥ 1 (Theorem 3.11 in Lang, page 622), so the
above can be rewritten as

. . .→ TorRn (F ′,M)→ TorRn (F,M)→ 0→ TorRn+1(F
′,M)→ TorRn+1(F,M)→ 0→ . . .

If F is flat, then TorRn (F,M) = 0 for n ≥ 1, so the sequence becomes

. . .→ TorRn (F ′,M)→ 0→ 0→ TorRn+1(F
′,M)→ 0→ 0→ . . .

Since this sequence is exact, this implies that TorRn (F ′,M) = 0 for n ≥ 1, so F ′ is flat (again
by Theorem 3.11). By a similar argument, if F ′ is flat, we get an exact sequence

. . .→ 0→ TorRn (F,M)→ 0→ 0→ TorRn+1(F,M)→ 0→ . . .

which implies that TorRn (F,M) = 0 for n ≥ 1, so F is flat. Hence F ′ is flat if and only if F
is flat.

Proposition 0.10 (Exercise 3b, injective part). Fix a commutative ring R, and let

0 −−−→ F ′ −−−→ F −−−→ F ′′ −−−→ 0

be an exact sequence of R-modules, where F ′ is injective. Then F is injective if and only if
F ′′ is injective.
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Proof. Fix an R-module M and a projective resolution of M

. . . −−−→ P1 −−−→ P0 −−−→ M −−−→ 0

Then we have the following commutative diagram, which is a short exact sequence of chain
complexes with morphisms of degree zero.

0 0 0y y y
0 −−−→ HomR(P0, F

′) −−−→ HomR(P1, F
′) −−−→ HomR(P2, F

′) −−−→ . . .y y y
0 −−−→ HomR(P0, F ) −−−→ HomR(P1, F ) −−−→ HomR(P2, F ) −−−→ . . .y y y
0 −−−→ HomR(P0, F

′′) −−−→ HomR(P1, F
′′) −−−→ HomR(P2, F

′′) −−−→ . . .y y y
0 0 0

Each column is a short exact sequence, because Pi is projective, so the functor HomR(Pi,−) is
exact. Thus the above is a short exact sequence of complexes with morphisms of degree zero.
For each row, the nth homology is ExtRn (M,F ′),ExtRn (M,F ), or ExtRn (M,F ′′) respectively.
By Theorem 2.1 (Lang, page 768), we get a long exact sequence on homology,

. . .→ ExtRn (M,F ′)→ ExtRn (M,F )→ ExtRn (M,F ′′)→
→ ExtRn+1(M,F ′)→ ExtRn+1(M,F )→ ExtRn+1(M,F ′′)→ . . .

Now, since F ′ is injective, ExtRn (M,F ′) = 0 for n ≥ 1, so the above can be rewritten as

. . .→ 0→ ExtRn (M,F )→ ExtRn (M,F ′′)→ 0→ ExtRn+1(M,F )→ ExtRn+1(M,F ′′)→ . . .

If F is injective, then ExtRn (M,F ) = 0 for n ≥ 1, so the sequence becomes

. . .→ 0→ 0→ ExtRn (M,F ′′)→ 0→ 0→ ExtRn+1(M,F ′′)→ . . .

Since this sequence is exact, this implies that ExtRn (M,F ′′) = 0 for n ≥ 1, so F ′′ is injective.
By a similar argument, if F ′′ is injective, we get an exact sequence

. . .→ 0→ ExtRn (M,F )→ 0→ 0→ ExtRn+1(M,F )→ 0→ . . .

which implies that ExtRn (M,F ) = 0 for n ≥ 1, so F is injective. Hence F ′′ is injective if and
only if F is injective.

Proposition 0.11 (Exercise 3b, projective part). Fix a commutative ring R, and let

0 −−−→ F ′
φ−−−→ F

ψ−−−→ F ′′ −−−→ 0

be an exact sequence of R-modules, where F ′′ is projective. Then F is projective if and only
if F ′ is projective.
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Proof. Fix an R-module M and an injective resolution of M

0 −−−→ M −−−→ I0 −−−→ I1 −−−→ . . .

Then we have the following commutative diagram, which is a short exact sequence of chain
complexes with morphisms of degree zero.

0 0 0x x x
0 −−−→ HomR(F ′, I0) −−−→ HomR(F ′, I1) −−−→ HomR(F ′, I2) −−−→ . . .x x x
0 −−−→ HomR(F, I0) −−−→ HomR(F, I1) −−−→ HomR(F, I2) −−−→ . . .x x x
0 −−−→ HomR(F ′′, I0) −−−→ HomR(F ′′, I1) −−−→ HomR(F ′′, I2) −−−→ . . .x x x

0 0 0

Each column is a short exact sequence, because Ii is injective, so the functor HomR(−, Ii) is
exact. Thus the above is a short exact sequence of complexes with morphisms of degree zero.
For each row, the nth homology is ExtRn (F ′,M), ExtRn (F,M), or ExtRn (F ′′,M) respectively.
By Theorem 2.1 (Lang, page 768), we get a long exact sequence on homology,

. . .→ ExtRn (F ′′,M)→ ExtRn (F,M)→ ExtRn (F ′,M)→
→ ExtRn+1(F

′′,M)→ ExtRn+1(F,M)→ ExtRn+1(F
′,M)→ . . .

Now, since F ′′ is projective, ExtRn (F ′′,M) = 0 for n ≥ 1, so the above can be rewritten as

. . .→ 0→ ExtRn (F,M)→ ExtRn (F ′,M)→ 0→ ExtRn+1(F,M)→ ExtRn+1(F
′,M)→ . . .

If F is projective, then ExtRn (F,M) = 0 for n ≥ 1, so the sequence becomes

. . .→ 0→ 0→ ExtRn (F ′,M)→ 0→ 0→ ExtRn+1(F
′,M)→ . . .

Since this sequence is exact, this implies that ExtRn (F ′,M) = 0 for n ≥ 1, so F ′ is projective.
By a similar argument, if F ′ is projective, we get an exact sequence

. . .→ 0→ ExtRn (F,M)→ 0→ 0→ ExtRn+1(F,M)→ 0→ . . .

which implies that ExtRn (F,M) = 0 for n ≥ 1, so F is projective. Hence F ′ is projective if
and only if F is projective.

Definition 0.12. Let R be a ring, and M,N be R-modules. An extension of M by N is
an exact sequence

0 −−−→ N −−−→ E −−−→ M −−−→ 0
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We define a map from extensions of M by N to Ext1R(M,N). Choose an extension
0→ N → E → M → 0. Let P be a projective R-module, with a surjective homomorphism
p : P →M . Let K = ker p. Then there is an exact sequence

0 −−−→ K
w−−−→ P

p−−−→ M −−−→ 0

where w is the inclusion. Because P is projective, there exists a homomorphism u : P → E,
and depending on u a unique homomorphism v : K → N so that the following diagram
commutes.

0 −−−→ K
w−−−→ P

p−−−→ M −−−→ 0

v

y u

y id

y
0 −−−→ N −−−→ E −−−→ M −−−→ 0

On the other hand, we have the exact sequence

0 −−−→ HomR(M,N) −−−→ HomR(P,N) −−−→ HomR(K,N) −−−→ Ext1R(M,N) −−−→ 0

with the last term on the right being equal to zero because Ext1R(P,N) = 0. To the extension
0→ N → E →M → 0 we associate the image of v in Ext1R(M,N).

Proposition 0.13 (Exercise 4, Lang Ch. XX Exercise 27). The association above is a
bijection between isomorphism classes of extensions and Ext1R(M,N).

Proof. Denote the association defined above by Φ. We will construct an inverse for Φ. Let
e ∈ Ext1R(M,N). We have an exact sequence

0 −−−→ K
w−−−→ P

p−−−→ M −−−→ 0

where P is projective, K = ker p, and w is the inclusion. Then the following sequence is
exact,

0 −−−→ HomR(M,N) −−−→ HomR(P,N) −−−→ HomR(K,N)

−−−→ Ext1R(M,N) −−−→ Ext1R(P,N) −−−→ . . .

But Ext1R(P,N) = 0 since P is projective, so HomR(K,N) → Ext1R(M,N) is surjective.
That is, there exists v ∈ HomR(K,N) so that Φ(v) = e.

Now define
J = {(v(x),−w(x)) ∈ N ⊕ P : x ∈ K}

and then define E = (N ⊕ P )/J . We claim that the map ψ : N → E given by y 7→ (y, 0)
mod J is injective.

kerψ = {y ∈ N : (y, 0) ∈ J} = {y ∈ N : ∃x ∈ K y = v(x), 0 = w(−x)}

Since w is injective, w(−x) = 0 implies x = 0, so the kernel of ψ is trivial. Hence ψ is
injective as claimed. Now we claim that the map N ⊕ P → M given by (x, y) 7→ (0, p(y))
vanishes on J . This follows because p ◦ w = 0.

(v(x),−w(x)) 7→ (0, p(−w(x)) = (0,−p(w(x))) = (0, 0)
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Hence we have an induced map E = (N ⊕ P )/J → M , which is surjective. Thus, from
e ∈ Ext1R(M,N), we have produced an extension 0→ N → E → M → 0. We’ll denote this
association Ψ.

We claim that Φ ◦ Ψ is the identity on Ext1R(M,N). Let e ∈ Ext1R(M,N). Then Ψ(e)
is the extension 0 → N → E → M → 0, which, by construction, lives inside the following
diagram:

0 −−−→ K
w−−−→ P

p−−−→ M −−−→ 0

v

y y id

y
0 −−−→ N −−−→ (N ⊕ P )/J −−−→ M −−−→ 0

By definition of Φ, Φ(Ψ(e)) is the image of v in Ext1R(K,N), which is e by construction of
Ψ. Thus Φ ◦Ψ is the identity on Ext1R(M,N).

Now we claim that Ψ ◦ Φ maps an extension to an isomorphic extension. Let 0→ N →
E → M → 0 be an extension of M by N . By definition, its image under Φ is found by
choosing a projective module P containing M and constructing the following diagram, and
taking the image of v in Ext1R(M,N).

0 −−−→ K
w−−−→ P

p−−−→ M −−−→ 0

v

y u

y id

y
0 −−−→ N −−−→ E −−−→ M −−−→ 0

Denote this image by e. Then by construction of Ψ, Ψ(e) is the extension 0 → N →
(N ⊕ P )/J →M → 0 so that the following diagram commutes.

0 −−−→ K
w−−−→ P

p−−−→ M −−−→ 0

v

y y id

y
0 −−−→ N −−−→ (N ⊕ P )/J −−−→ M −−−→ 0

Combining these diagrams,

0 −−−→ N −−−→ (N ⊕ P )/J −−−→ M −−−→ 0x x x
0 −−−→ K

w−−−→ P
p−−−→ M −−−→ 0

v

y u

y id

y
0 −−−→ N −−−→ E −−−→ M −−−→ 0

then deleting some now irrelevant pieces,

0 N (N ⊕ P )/J M 0

P

0 N E M 0

id id

u
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and further collapsing, we get

(N ⊕ P )/J

0 N P M 0

E

u

Then we get a map (N ⊕ P )/J → E by (x, y) 7→ u(y). This map makes the above diagram
commute, so these extensions are isomorphic.

Proposition 0.14 (Exercise 5). Three inequivalent extensions of Z/3Z by Z are given by

0 −−−→ Z 17→3−−−→ Z 17→1−−−→ Z/3Z −−−→ 0

0 −−−→ Z 17→3−−−→ Z 17→2−−−→ Z/3Z −−−→ 0

0 −−−→ Z 17→(1,0)−−−−→ Z× (Z/3Z)
(1,0) 7→0−−−−→
(0,1) 7→1

Z/3Z −−−→ 0

Proof. First we check that these are all exact sequences.

im(1 7→ 3) = 3Z = ker(1 7→ 1)

im(1 7→ 3) = 3Z = ker(1 7→ 2)

im(1 7→ (1, 0)) = {(n, 0) : n ∈ Z} = ker((1, 0) 7→ 0)

The third extension is not equivalent to the first two because there is no isomorphism Z→
Z×Z/3Z, since the former is torsion free and the latter is not. If the first two are equivalent
extensions, then there is an isomorphism φ : Z→ Z so that the following diagram commutes:

Z

0 Z Z/3Z 0

Z

1 7→1

φ

17→3

17→3
17→2

Just looking at the left triangle implies that φ = IdZ, which measn that the right triangle does
not commute. Hence no such isomorphism exists, so these are inequivalent extensions.

Proposition 0.15 (Exercise 6a). Let R = C[x, y] be the ring of polynomials with complex
coefficients in two variables x, y. Define R× C→ C by

f · z 7→ (f(0, 0))(z)

then C is an R-module with this structure.
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Proof. Let z, z1, z2 ∈ C and f, g ∈ C[x, y]. Let p1 denote the constant polynomial p1(x, y) =
1, which is the multiplicative unit in C[x, y].

f · (z1 + z2) = f(0, 0)(z1 + z2) = f(0, 0)z1 + f(0, 0)z2 = f · z1 + f · z2
(f + g) · z = (f + g)(0, 0)z = (f(0, 0) + g(0, 0))z = f(0, 0)z + g(0, 0)z = f · z + g · z

(fg) · z = (fg)(0, 0)z = (f(0, 0)g(0, 0))z = f(0, 0)(g · z) = f · (g · z)

p1 · z = p1(0, 0)z = z

Thus this gives C an R-module structure.

Proposition 0.16 (Exercise 7a). Let R be a principal ideal domain, and let F be an R-
module. Then F is flat if and only if it is torsion free.

Proof. Suppose F is flat. For r ∈ R, define ψr : R → R by ψr(x) = rx. Since R is an
integral domain, ψr is injective. Since F is flat, the induced map IdF ⊗ψr : F ⊗R→ F ⊗R
given by f ⊗ x 7→ f ⊗ ψr(x) is injective. Suppose f is a torsion element of F , that is, there
exists r ∈ R with r 6= 0 so that rf = 0. Then

IdF ⊗ψr(f ⊗ 1) = f ⊗ r = (rf)⊗ 1 = 0

IdF ⊗ψr(0⊗ 1) = 0⊗ r = 0

By injectivity of IdF ⊗ψr, this implies f ⊗ 1 = 0⊗ 1. Recall that the map F ⊗R→ F given
by f ⊗ 1 → f is an isomorphism, so f = 0. Thus any torsion element of f is zero, so F is
torsion free.

Now suppose F is torsion free. Recall that F is flat if and only if TorR1 (F,R/I) = 0 for
every ideal I ⊂ R. Let I ⊂ R be an ideal. Since R is a PID, I = (x) for some a ∈ R. By
Proposition 0.1,

TorR1 (F,R/(x)) = {f ∈ F : xf = 0}
which is zero because F is torsion free. Thus F is flat.

Lemma 0.17 (for Exercise 7b). A Z-module is projective if and only if it is free.

Proof. Free modules are always projective, over any ring, so one direction is done. Let M
be a projective Z-module. Then M is a direct summand of a free Z-module, that is, there
exists an abelian group N so that M ⊕ N is free abelian. Then M is a subgroup of a free
abelian group, so it is free abelian (Theorem 7.3 in Lang). Thus M is a free Z-module.

Lemma 0.18 (for Exercise 7b). Q is not a free Z-module.

Proof. Suppose that Q is free as a Z-module. Then the basis cannot have just one element
x, since then x

2
would not be an integer multiple of x, and then x would not generate Q over

Z. Thus there must be a linearly independent set with at least two nonzero elements, say a
b

and c
d

with a, b, c, d ∈ Z \ {0}. Then note that lcm(a,c)
a

and lcm(a,c)
c

are both integers, so(
b lcm(a, c)

a

)(a
b

)
+

(
−d lcm(a, c)

c

)( c
d

)
= 0

is a nontrivial linear combination. Thus there are no linearly independent subset of Q with
at least two elements. Thus there can be no basis for Q over Z, so it is not free.

11



Proposition 0.19 (Exercise 7b). As a Z-module, Q is flat but not projective.

Proof. Since Q is torsion-free and Z is a PID, Q is a flat Z-module by part (a). By the
previous two lemmas, a Z module is free if and only if it is projective, and Q is not free;
hence Q is not a projective Z-module.
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