Homework 2 Algebra

Joshua Ruiter

February 15, 2018

Proposition 0.1 (Exercise 1a). Let R be a commutative ring and $x \in R$ an element that is not a zero divisor. Let M be an R-module. Then

$$\operatorname{Tor}_{1}^{R}(R/(x), M) \cong \{ m \in M : xm = 0 \}$$

Proof. Consider the sequence of R-modules

$$0 \longrightarrow R \xrightarrow{r \mapsto xr} R \xrightarrow{r \mapsto \overline{r}} R/(x) \longrightarrow 0$$

The map $r \mapsto xr$ is injective because x is not a zero divisor, so this is an exact sequence. Since R is free as an R-module, this is a projective resolution of R/(x). Dropping the R/(x) and applying the tensor functor $M \otimes -$ we get the complex

$$0 \, \longrightarrow \, M \otimes R \, \xrightarrow{m \otimes r \mapsto m \otimes (xr)} \, M \otimes R \, \longrightarrow \, 0$$

Note that $m \otimes (xr) = (xm) \otimes r$. We have a functorial isomorphism $M \otimes R \to M$ given by $m \otimes r \mapsto rm$, that is, the following diagram commutes:

$$0 \longrightarrow M \otimes R \xrightarrow{m \otimes r \mapsto (xm) \otimes r} M \otimes R \longrightarrow 0$$

$$\downarrow^{m \otimes r \mapsto rm} \qquad \downarrow^{m \otimes r \mapsto rm}$$

$$0 \longrightarrow M \xrightarrow{m \mapsto xm} M \longrightarrow 0$$

By definition, $\operatorname{Tor}_1(R/(x), M)$ is the homology of the top row tensor chain complex at the left copy of $M \otimes R$. Since the image is trivial, this homology is just the kernel of $m \otimes r \mapsto (xm) \otimes r$. Since the vertical maps are isomorphisms and the square commutes, this kernel is isomorphic to the kernel of $m \mapsto xm$. Thus

$$\operatorname{Tor}_{1}^{R}(R/(x), M) \cong \{m \in M : xm = 0\}$$

Proposition 0.2 (Exercise 1b). Let m, n be positive integers, and let $d = \gcd(n, m)$.

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/d\mathbb{Z}$$

Proof. We apply part (a) with $R = \mathbb{Z}$, x = m, and $M = \mathbb{Z}/n\mathbb{Z}$. Then

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z}) = \{x \in \mathbb{Z}/n\mathbb{Z} : mx = 0\}$$

This is the kernel of $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ defined by $x \to mx$, so it is a subgroup of $\mathbb{Z}/n\mathbb{Z}$, so it is cyclic. It is generated by $\frac{n}{\gcd(n,m)}$, so it is cyclic of order $\gcd(n,m)$.

Lemma 0.3 (for Exercises 2a,2b). Let A be an abelian group. There is a free resolution of \mathbb{Z} -modules

$$\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow E \longrightarrow F \longrightarrow A \longrightarrow 0$$

In particular, this is a projective resolution of A.

Proof. Let $\{x_i\}_{i\in I}$ be a set of generators for A, and let F be the free abelian group generated by $\{x_i\}_{i\in I}$. Let $\pi: F \to A$ be the unique homomorphism such that $x_i \mapsto x_i$. Since $\ker \pi$ is a subgroup of a free abelian group, it is free. Let $\iota: \ker \pi \to F$ be the inclusion. Then the sequence

$$\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow \ker \pi \xrightarrow{\iota} F \xrightarrow{\pi} A \longrightarrow 0$$

is a free resolution of A.

Proposition 0.4 (Exercise 2a). Let A and B be abelian groups. Then $\operatorname{Tor}_n^{\mathbb{Z}}(A,B)=0$ for $n\geq 2$.

Proof. Using the previous lemma, take a free resolution of A,

$$\ldots \longrightarrow 0 \longrightarrow 0 \longrightarrow E \longrightarrow F \longrightarrow A \longrightarrow 0$$

Then $\operatorname{Tor}_n^{\mathbb{Z}}$ is the homology of the sequence

$$\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow E \otimes B \longrightarrow F \otimes B \longrightarrow 0$$

All of the kernels are trivial except the two on the far right, so the 2nd homology and higher are zero. \Box

Proposition 0.5 (Exercise 2b). Let A and B be abelian groups. Then $\operatorname{Ext}_{\mathbb{Z}}^n(A,B)=0$ for $n\geq 2$.

Proof. Using the previous lemma, take a free resolution of A,

$$\ldots \longrightarrow 0 \longrightarrow 0 \longrightarrow E \longrightarrow F \longrightarrow A \longrightarrow 0$$

Then $\operatorname{Ext}_n^{\mathbb{Z}}$ is the homology of the sequence

$$0 \longrightarrow \operatorname{Hom}(F,B) \longrightarrow \operatorname{Hom}(E,B) \longrightarrow 0 \longrightarrow 0 \longrightarrow \ldots$$

Starting with the 2nd homology, the kernel and image are both trivial, so $\operatorname{Ext}_n^{\mathbb{Z}} = 0$ for $n \geq 2$.

Proposition 0.6 (Exercise 2c). Let A be a finitely generated abelian group. Then A is free abelian if and only if $\operatorname{Ext}^1_{\mathbb{Z}}(A,\mathbb{Z})=0$.

Proof. First suppose that A is free abelian. Since A is finitely generated,

$$A \cong \bigoplus_{i=1}^{n} \mathbb{Z}$$

Then

$$\operatorname{Ext}^1_{\mathbb{Z}}(A,\mathbb{Z}) \cong \operatorname{Ext}^1_{\mathbb{Z}} \left(\bigoplus_{i=1}^n \mathbb{Z}, \mathbb{Z} \right) \cong \prod_{i=1}^n \operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z})$$

Since \mathbb{Z} is a free module over itself, it is projective, so $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}, B) = 0$ for any abelian group B, so $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) = 0$. Thus $\operatorname{Ext}^1_{\mathbb{Z}}(A, \mathbb{Z}) \cong \prod_{i=1}^n 0 = 0$.

Now suppose that $\operatorname{Ext}^1_{\mathbb{Z}}(A,\mathbb{Z}) = 0$. Since A is finitely generated,

$$A \cong \left(\bigoplus_{i=1}^{n} \mathbb{Z}\right) \oplus \left(\bigoplus_{j=1}^{m} \mathbb{Z}/a_{j}\mathbb{Z}\right)$$

for some set of $a_i \in \mathbb{Z}$. Then

$$\operatorname{Ext}_{\mathbb{Z}}^{1}(A, \mathbb{Z}) \cong \operatorname{Ext}_{\mathbb{Z}}^{1}\left(\left(\bigoplus_{i=1}^{n} \mathbb{Z}\right) \oplus \left(\bigoplus_{j=1}^{m} \mathbb{Z}/a_{j}\mathbb{Z}\right), \mathbb{Z}\right)$$
$$\cong \left(\prod_{i=1}^{n} \operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z}, \mathbb{Z})\right) \times \left(\prod_{j=1}^{m} \operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z}/a_{j}\mathbb{Z}, \mathbb{Z})\right)$$

As already noted, $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}) = 0$, so

$$\operatorname{Ext}^1_{\mathbb{Z}}(A,\mathbb{Z}) \cong \prod_{j=1}^m \operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/a_j\mathbb{Z},\mathbb{Z})$$

However, we know that

$$\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/a_j\mathbb{Z},\mathbb{Z}) \cong \mathbb{Z}/a_j\mathbb{Z}$$

which is not zero unless $a_j = 1$. Thus since $\operatorname{Ext}^1_{\mathbb{Z}}(A,\mathbb{Z}) = 0$ by hypothesis, $a_j = 1$ for all j. That is,

$$A \cong \bigoplus_{i=1}^{m} \mathbb{Z}$$

so A is free abelian.

Lemma 0.7 (for Exercise 3a). Let $f: X \to Y$ and $g: Y \to Z$ be set maps so that $g \circ f$ is injective. Then f is injective.

Proof. Let $a, b \in X$ so that f(a) = f(b). Then $g \circ f(a) = g \circ f(b)$ which implies a = b by injectivity of $g \circ f$. Hence f is injective.

Proposition 0.8 (Exercise 3a). Fix a commutative ring R, and let

$$0 \longrightarrow F' \stackrel{\phi}{\longrightarrow} F \stackrel{\psi}{\longrightarrow} F'' \longrightarrow 0$$

be an exact sequence of R-modules, where F'' is flat. Then F is flat if and only if F' is flat.

Proof. (All homomorphisms are R-module homomorphisms and all tensors are over R.) Let $\alpha: E' \to E$ be an injective homomorphism. Since F'' is flat, $F'' \otimes E' \to F'' \otimes E$ defined by $f'' \otimes e' \to f'' \otimes \alpha(e')$ is injective. Also, by Lemma 3.3 in Lang, the rows in the following diagram are exact. The diagram is commutative because the tensor product is a functor.

$$0 \longrightarrow F' \otimes E' \longrightarrow F \otimes E' \longrightarrow F'' \otimes E' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow F' \otimes E \longrightarrow F \otimes E \longrightarrow F'' \otimes E \longrightarrow 0$$

Suppose F' is flat. Then $F' \otimes E' \to F' \otimes E$ is injective. Since $F'' \otimes E' \to F'' \otimes E$ is also injective and $0 \to 0$ is (trivially) surjective, the diagram satisfies the hypotheses of Exercise 15a from Chapter 3 which we did in Homework 1 (one of the Four Lemmas). Thus $F \otimes E' \to F \otimes E$ is injective. Thus F is flat.

Now suppose that F is flat. Then $F \otimes E' \to F \otimes E$ is injective, so the composition $F' \otimes E' \to F \otimes E' \to F \otimes E$ is a composition of injections, so it is injective. By commutativity of the left square, the composition $F' \otimes E' \to F' \otimes E \to F \otimes E$ must be injective. By the previous lemma, this implies that $F' \otimes E' \to F' \otimes E$ is injective, which means that F' is flat.

(Here's the same commutative diagram with detailed descriptions of the maps.)

$$0 \longrightarrow F' \otimes E' \xrightarrow{f' \otimes e' \mapsto \phi(f') \otimes e'} F \otimes E' \xrightarrow{f \otimes e' \mapsto \psi(f) \otimes e'} F'' \otimes E' \longrightarrow 0$$

$$\downarrow f' \otimes e' \mapsto f' \otimes \alpha(e') \qquad \downarrow f \otimes e' \mapsto f \otimes \alpha(e') \qquad \downarrow f'' \otimes e' \mapsto f'' \otimes \alpha(e')$$

$$0 \longrightarrow F' \otimes E \xrightarrow{f' \otimes e \mapsto \phi(f') \otimes e} F \otimes E \xrightarrow{f \otimes e \mapsto \psi(f) \otimes e} F'' \otimes E \longrightarrow 0$$

Proposition 0.9 (Exercise 3a, alternate proof using a long exact sequence). Fix a commutative ring R, and let

$$0 \longrightarrow F' \xrightarrow{\phi} F \xrightarrow{\psi} F'' \longrightarrow 0$$

be an exact sequence of R-modules, where F'' is flat. Then F is flat if and only if F' is flat.

Proof. Fix an R-module M and a projective resolution of M

$$\dots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

Then we have the following commutative diagram.

Each column is a short exact sequence, because P_i is projective and hence flat (Lang, Proposition 3.1(iii), page 613). That is, the above is a short exact sequence of complexes with morphisms of degree zero. For each row, the *n*th homology is $\operatorname{Tor}_n^R(F', M)$, $\operatorname{Tor}_n^R(F, M)$, or $\operatorname{Tor}_n^R(F'', M)$ respectively. By Theorem 2.1 (Lang, page 768), we get a long exact sequence on homology,

$$\dots \to \operatorname{Tor}_n^R(F', M) \to \operatorname{Tor}_n^R(F, M) \to \operatorname{Tor}_n^R(F'', M) \to$$
$$\to \operatorname{Tor}_{n+1}^R(F', M) \to \operatorname{Tor}_{n+1}^R(F, M) \to \operatorname{Tor}_{n+1}^R(F'', M) \to \dots$$

Now, since F'' is flat, $\operatorname{Tor}_n^R(F'',M)=0$ for $n\geq 1$ (Theorem 3.11 in Lang, page 622), so the above can be rewritten as

$$\dots \to \operatorname{Tor}_n^R(F',M) \to \operatorname{Tor}_n^R(F,M) \to 0 \to \operatorname{Tor}_{n+1}^R(F',M) \to \operatorname{Tor}_{n+1}^R(F,M) \to 0 \to \dots$$

If F is flat, then $\operatorname{Tor}_n^R(F,M)=0$ for $n\geq 1$, so the sequence becomes

$$\dots \to \operatorname{Tor}_n^R(F', M) \to 0 \to 0 \to \operatorname{Tor}_{n+1}^R(F', M) \to 0 \to 0 \to \dots$$

Since this sequence is exact, this implies that $\operatorname{Tor}_n^R(F', M) = 0$ for $n \ge 1$, so F' is flat (again by Theorem 3.11). By a similar argument, if F' is flat, we get an exact sequence

$$\dots \to 0 \to \operatorname{Tor}_n^R(F, M) \to 0 \to 0 \to \operatorname{Tor}_{n+1}^R(F, M) \to 0 \to \dots$$

which implies that $\operatorname{Tor}_n^R(F,M)=0$ for $n\geq 1,$ so F is flat. Hence F' is flat if and only if F is flat. \square

Proposition 0.10 (Exercise 3b, injective part). Fix a commutative ring R, and let

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F'' \longrightarrow 0$$

be an exact sequence of R-modules, where F' is injective. Then F is injective if and only if F'' is injective.

Proof. Fix an R-module M and a projective resolution of M

$$\dots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

Then we have the following commutative diagram, which is a short exact sequence of chain complexes with morphisms of degree zero.

$$0 \longrightarrow \operatorname{Hom}_{R}(P_{0}, F') \longrightarrow \operatorname{Hom}_{R}(P_{1}, F') \longrightarrow \operatorname{Hom}_{R}(P_{2}, F') \longrightarrow \dots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \operatorname{Hom}_{R}(P_{0}, F) \longrightarrow \operatorname{Hom}_{R}(P_{1}, F) \longrightarrow \operatorname{Hom}_{R}(P_{2}, F) \longrightarrow \dots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \operatorname{Hom}_{R}(P_{0}, F'') \longrightarrow \operatorname{Hom}_{R}(P_{1}, F'') \longrightarrow \operatorname{Hom}_{R}(P_{2}, F'') \longrightarrow \dots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \operatorname{Hom}_{R}(P_{0}, F'') \longrightarrow \operatorname{Hom}_{R}(P_{1}, F'') \longrightarrow \operatorname{Hom}_{R}(P_{2}, F'') \longrightarrow \dots$$

Each column is a short exact sequence, because P_i is projective, so the functor $\operatorname{Hom}_R(P_i, -)$ is exact. Thus the above is a short exact sequence of complexes with morphisms of degree zero. For each row, the *n*th homology is $\operatorname{Ext}_n^R(M, F')$, $\operatorname{Ext}_n^R(M, F)$, or $\operatorname{Ext}_n^R(M, F'')$ respectively. By Theorem 2.1 (Lang, page 768), we get a long exact sequence on homology,

$$\ldots \to \operatorname{Ext}_n^R(M,F') \to \operatorname{Ext}_n^R(M,F) \to \operatorname{Ext}_n^R(M,F'') \to$$
$$\to \operatorname{Ext}_{n+1}^R(M,F') \to \operatorname{Ext}_{n+1}^R(M,F) \to \operatorname{Ext}_{n+1}^R(M,F'') \to \ldots$$

Now, since F' is injective, $\operatorname{Ext}_n^R(M,F')=0$ for $n\geq 1$, so the above can be rewritten as

$$\ldots \to 0 \to \operatorname{Ext}_n^R(M,F) \to \operatorname{Ext}_n^R(M,F'') \to 0 \to \operatorname{Ext}_{n+1}^R(M,F) \to \operatorname{Ext}_{n+1}^R(M,F'') \to \ldots$$

If F is injective, then $\operatorname{Ext}_n^R(M,F)=0$ for $n\geq 1$, so the sequence becomes

$$\dots \to 0 \to 0 \to \operatorname{Ext}_n^R(M, F'') \to 0 \to 0 \to \operatorname{Ext}_{n+1}^R(M, F'') \to \dots$$

Since this sequence is exact, this implies that $\operatorname{Ext}_n^R(M, F'') = 0$ for $n \ge 1$, so F'' is injective. By a similar argument, if F'' is injective, we get an exact sequence

$$\dots \to 0 \to \operatorname{Ext}_n^R(M,F) \to 0 \to 0 \to \operatorname{Ext}_{n+1}^R(M,F) \to 0 \to \dots$$

which implies that $\operatorname{Ext}_n^R(M,F)=0$ for $n\geq 1$, so F is injective. Hence F'' is injective if and only if F is injective. \square

Proposition 0.11 (Exercise 3b, projective part). Fix a commutative ring R, and let

$$0 \longrightarrow F' \stackrel{\phi}{\longrightarrow} F \stackrel{\psi}{\longrightarrow} F'' \longrightarrow 0$$

be an exact sequence of R-modules, where F'' is projective. Then F is projective if and only if F' is projective.

Proof. Fix an R-module M and an injective resolution of M

$$0 \longrightarrow M \longrightarrow I_0 \longrightarrow I_1 \longrightarrow \dots$$

Then we have the following commutative diagram, which is a short exact sequence of chain complexes with morphisms of degree zero.

Each column is a short exact sequence, because I_i is injective, so the functor $\text{Hom}_R(-, I_i)$ is exact. Thus the above is a short exact sequence of complexes with morphisms of degree zero. For each row, the *n*th homology is $\text{Ext}_n^R(F', M)$, $\text{Ext}_n^R(F, M)$, or $\text{Ext}_n^R(F'', M)$ respectively. By Theorem 2.1 (Lang, page 768), we get a long exact sequence on homology,

$$\dots \to \operatorname{Ext}_n^R(F'', M) \to \operatorname{Ext}_n^R(F, M) \to \operatorname{Ext}_n^R(F', M) \to$$
$$\to \operatorname{Ext}_{n+1}^R(F'', M) \to \operatorname{Ext}_{n+1}^R(F, M) \to \operatorname{Ext}_{n+1}^R(F', M) \to \dots$$

Now, since F'' is projective, $\operatorname{Ext}_n^R(F'', M) = 0$ for $n \geq 1$, so the above can be rewritten as

$$\ldots \to 0 \to \operatorname{Ext}_n^R(F,M) \to \operatorname{Ext}_n^R(F',M) \to 0 \to \operatorname{Ext}_{n+1}^R(F,M) \to \operatorname{Ext}_{n+1}^R(F',M) \to \ldots$$

If F is projective, then $\operatorname{Ext}_n^R(F,M)=0$ for $n\geq 1$, so the sequence becomes

$$\dots \to 0 \to 0 \to \operatorname{Ext}_n^R(F', M) \to 0 \to 0 \to \operatorname{Ext}_{n+1}^R(F', M) \to \dots$$

Since this sequence is exact, this implies that $\operatorname{Ext}_n^R(F', M) = 0$ for $n \ge 1$, so F' is projective. By a similar argument, if F' is projective, we get an exact sequence

$$\dots \to 0 \to \operatorname{Ext}_n^R(F, M) \to 0 \to 0 \to \operatorname{Ext}_{n+1}^R(F, M) \to 0 \to \dots$$

which implies that $\operatorname{Ext}_n^R(F,M)=0$ for $n\geq 1$, so F is projective. Hence F' is projective if and only if F is projective.

Definition 0.12. Let R be a ring, and M, N be R-modules. An **extension** of M by N is an exact sequence

$$0 \longrightarrow N \longrightarrow E \longrightarrow M \longrightarrow 0$$

We define a map from extensions of M by N to $\operatorname{Ext}^1_R(M,N)$. Choose an extension $0 \to N \to E \to M \to 0$. Let P be a projective R-module, with a surjective homomorphism $p: P \to M$. Let $K = \ker p$. Then there is an exact sequence

$$0 \longrightarrow K \xrightarrow{w} P \xrightarrow{p} M \longrightarrow 0$$

where w is the inclusion. Because P is projective, there exists a homomorphism $u: P \to E$, and depending on u a unique homomorphism $v: K \to N$ so that the following diagram commutes.

On the other hand, we have the exact sequence

$$0 \longrightarrow \operatorname{Hom}_R(M,N) \longrightarrow \operatorname{Hom}_R(P,N) \longrightarrow \operatorname{Hom}_R(K,N) \longrightarrow \operatorname{Ext}^1_R(M,N) \longrightarrow 0$$

with the last term on the right being equal to zero because $\operatorname{Ext}_R^1(P,N) = 0$. To the extension $0 \to N \to E \to M \to 0$ we associate the image of v in $\operatorname{Ext}_R^1(M,N)$.

Proposition 0.13 (Exercise 4, Lang Ch. XX Exercise 27). The association above is a bijection between isomorphism classes of extensions and $\operatorname{Ext}^1_R(M,N)$.

Proof. Denote the association defined above by Φ . We will construct an inverse for Φ . Let $e \in \operatorname{Ext}^1_R(M,N)$. We have an exact sequence

$$0 \longrightarrow K \stackrel{w}{\longrightarrow} P \stackrel{p}{\longrightarrow} M \longrightarrow 0$$

where P is projective, $K = \ker p$, and w is the inclusion. Then the following sequence is exact,

$$0 \longrightarrow \operatorname{Hom}_{R}(M,N) \longrightarrow \operatorname{Hom}_{R}(P,N) \longrightarrow \operatorname{Hom}_{R}(K,N)$$
$$\longrightarrow \operatorname{Ext}_{R}^{1}(M,N) \longrightarrow \operatorname{Ext}_{R}^{1}(P,N) \longrightarrow \dots$$

But $\operatorname{Ext}_R^1(P,N)=0$ since P is projective, so $\operatorname{Hom}_R(K,N)\to\operatorname{Ext}_R^1(M,N)$ is surjective. That is, there exists $v\in\operatorname{Hom}_R(K,N)$ so that $\Phi(v)=e$.

Now define

$$J = \{(v(x), -w(x)) \in N \oplus P : x \in K\}$$

and then define $E = (N \oplus P)/J$. We claim that the map $\psi : N \to E$ given by $y \mapsto (y,0)$ mod J is injective.

$$\ker \psi = \{y \in N : (y,0) \in J\} = \{y \in N : \exists x \in K \ y = v(x), 0 = w(-x)\}$$

Since w is injective, w(-x)=0 implies x=0, so the kernel of ψ is trivial. Hence ψ is injective as claimed. Now we claim that the map $N\oplus P\to M$ given by $(x,y)\mapsto (0,p(y))$ vanishes on J. This follows because $p\circ w=0$.

$$(v(x),-w(x))\mapsto (0,p(-w(x))=(0,-p(w(x)))=(0,0)$$

Hence we have an induced map $E = (N \oplus P)/J \to M$, which is surjective. Thus, from $e \in \operatorname{Ext}^1_R(M,N)$, we have produced an extension $0 \to N \to E \to M \to 0$. We'll denote this association Ψ .

We claim that $\Phi \circ \Psi$ is the identity on $\operatorname{Ext}^1_R(M,N)$. Let $e \in \operatorname{Ext}^1_R(M,N)$. Then $\Psi(e)$ is the extension $0 \to N \to E \to M \to 0$, which, by construction, lives inside the following diagram:

$$0 \longrightarrow K \xrightarrow{w} P \xrightarrow{p} M \longrightarrow 0$$

$$\downarrow v \downarrow \qquad \qquad \downarrow \text{id} \downarrow$$

$$0 \longrightarrow N \longrightarrow (N \oplus P)/J \longrightarrow M \longrightarrow 0$$

By definition of Φ , $\Phi(\Psi(e))$ is the image of v in $\operatorname{Ext}^1_R(K,N)$, which is e by construction of Ψ . Thus $\Phi \circ \Psi$ is the identity on $\operatorname{Ext}^1_R(M,N)$.

Now we claim that $\Psi \circ \Phi$ maps an extension to an isomorphic extension. Let $0 \to N \to E \to M \to 0$ be an extension of M by N. By definition, its image under Φ is found by choosing a projective module P containing M and constructing the following diagram, and taking the image of v in $\operatorname{Ext}^1_R(M,N)$.

$$0 \longrightarrow K \xrightarrow{w} P \xrightarrow{p} M \longrightarrow 0$$

$$\downarrow v \downarrow \qquad \downarrow id \downarrow$$

$$0 \longrightarrow N \longrightarrow E \longrightarrow M \longrightarrow 0$$

Denote this image by e. Then by construction of Ψ , $\Psi(e)$ is the extension $0 \to N \to (N \oplus P)/J \to M \to 0$ so that the following diagram commutes.

Combining these diagrams,

then deleting some now irrelevant pieces,

$$0 \longrightarrow N \longrightarrow (N \oplus P)/J \longrightarrow M \longrightarrow 0$$

$$\downarrow^{\text{id}} \qquad P \qquad \downarrow^{\text{id}}$$

$$0 \longrightarrow N \longrightarrow E \longrightarrow M \longrightarrow 0$$

and further collapsing, we get

Then we get a map $(N \oplus P)/J \to E$ by $(x,y) \mapsto u(y)$. This map makes the above diagram commute, so these extensions are isomorphic.

Proposition 0.14 (Exercise 5). Three inequivalent extensions of $\mathbb{Z}/3\mathbb{Z}$ by \mathbb{Z} are given by

Proof. First we check that these are all exact sequences.

$$im(1 \mapsto 3) = 3\mathbb{Z} = \ker(1 \mapsto \overline{1})$$

$$im(1 \mapsto 3) = 3\mathbb{Z} = \ker(1 \mapsto \overline{2})$$

$$im(1 \mapsto (1,0)) = \{(n,0) : n \in \mathbb{Z}\} = \ker((1,0) \mapsto 0)$$

The third extension is not equivalent to the first two because there is no isomorphism $\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, since the former is torsion free and the latter is not. If the first two are equivalent extensions, then there is an isomorphism $\phi : \mathbb{Z} \to \mathbb{Z}$ so that the following diagram commutes:

Just looking at the left triangle implies that $\phi = \mathrm{Id}_{\mathbb{Z}}$, which means that the right triangle does not commute. Hence no such isomorphism exists, so these are inequivalent extensions. \square

Proposition 0.15 (Exercise 6a). Let $R = \mathbb{C}[x,y]$ be the ring of polynomials with complex coefficients in two variables x, y. Define $R \times \mathbb{C} \to \mathbb{C}$ by

$$f \cdot z \mapsto (f(0,0))(z)$$

then \mathbb{C} is an R-module with this structure.

Proof. Let $z, z_1, z_2 \in \mathbb{C}$ and $f, g \in \mathbb{C}[x, y]$. Let p_1 denote the constant polynomial $p_1(x, y) = 1$, which is the multiplicative unit in $\mathbb{C}[x, y]$.

$$f \cdot (z_1 + z_2) = f(0,0)(z_1 + z_2) = f(0,0)z_1 + f(0,0)z_2 = f \cdot z_1 + f \cdot z_2$$

$$(f+g) \cdot z = (f+g)(0,0)z = (f(0,0)+g(0,0))z = f(0,0)z + g(0,0)z = f \cdot z + g \cdot z$$

$$(fg) \cdot z = (fg)(0,0)z = (f(0,0)g(0,0))z = f(0,0)(g \cdot z) = f \cdot (g \cdot z)$$

$$p_1 \cdot z = p_1(0,0)z = z$$

Thus this gives \mathbb{C} an R-module structure.

Proposition 0.16 (Exercise 7a). Let R be a principal ideal domain, and let F be an R-module. Then F is flat if and only if it is torsion free.

Proof. Suppose F is flat. For $r \in R$, define $\psi_r : R \to R$ by $\psi_r(x) = rx$. Since R is an integral domain, ψ_r is injective. Since F is flat, the induced map $\mathrm{Id}_F \otimes \psi_r : F \otimes R \to F \otimes R$ given by $f \otimes x \mapsto f \otimes \psi_r(x)$ is injective. Suppose f is a torsion element of F, that is, there exists $r \in R$ with $r \neq 0$ so that rf = 0. Then

$$\operatorname{Id}_F \otimes \psi_r(f \otimes 1) = f \otimes r = (rf) \otimes 1 = 0$$
$$\operatorname{Id}_F \otimes \psi_r(0 \otimes 1) = 0 \otimes r = 0$$

By injectivity of $\mathrm{Id}_F \otimes \psi_r$, this implies $f \otimes 1 = 0 \otimes 1$. Recall that the map $F \otimes R \to F$ given by $f \otimes 1 \to f$ is an isomorphism, so f = 0. Thus any torsion element of f is zero, so F is torsion free.

Now suppose F is torsion free. Recall that F is flat if and only if $\operatorname{Tor}_1^R(F, R/I) = 0$ for every ideal $I \subset R$. Let $I \subset R$ be an ideal. Since R is a PID, I = (x) for some $a \in R$. By Proposition 0.1,

$$\operatorname{Tor}_{1}^{R}(F, R/(x)) = \{ f \in F : xf = 0 \}$$

which is zero because F is torsion free. Thus F is flat.

Lemma 0.17 (for Exercise 7b). A \mathbb{Z} -module is projective if and only if it is free.

Proof. Free modules are always projective, over any ring, so one direction is done. Let M be a projective \mathbb{Z} -module. Then M is a direct summand of a free \mathbb{Z} -module, that is, there exists an abelian group N so that $M \oplus N$ is free abelian. Then M is a subgroup of a free abelian group, so it is free abelian (Theorem 7.3 in Lang). Thus M is a free \mathbb{Z} -module. \square

Lemma 0.18 (for Exercise 7b). \mathbb{Q} is not a free \mathbb{Z} -module.

Proof. Suppose that \mathbb{Q} is free as a \mathbb{Z} -module. Then the basis cannot have just one element x, since then $\frac{x}{2}$ would not be an integer multiple of x, and then x would not generate \mathbb{Q} over \mathbb{Z} . Thus there must be a linearly independent set with at least two nonzero elements, say $\frac{a}{b}$ and $\frac{c}{d}$ with $a, b, c, d \in \mathbb{Z} \setminus \{0\}$. Then note that $\frac{\operatorname{lcm}(a,c)}{a}$ and $\frac{\operatorname{lcm}(a,c)}{c}$ are both integers, so

$$\left(\frac{b\operatorname{lcm}(a,c)}{a}\right)\left(\frac{a}{b}\right) + \left(\frac{-d\operatorname{lcm}(a,c)}{c}\right)\left(\frac{c}{d}\right) = 0$$

is a nontrivial linear combination. Thus there are no linearly independent subset of \mathbb{Q} with at least two elements. Thus there can be no basis for \mathbb{Q} over \mathbb{Z} , so it is not free.

Proposition 0.19 (Exercise 7b). As a \mathbb{Z} -module, \mathbb{Q} is flat but not projective.

Proof. Since $\mathbb Q$ is torsion-free and $\mathbb Z$ is a PID, $\mathbb Q$ is a flat $\mathbb Z$ -module by part (a). By the previous two lemmas, a $\mathbb Z$ module is free if and only if it is projective, and $\mathbb Q$ is not free; hence $\mathbb Q$ is not a projective $\mathbb Z$ -module.